УДК 338.24

Формирование модели управления медицинским обеспечением авиационно-спасательного формирования МЧС России

Ожогин А.А.

ФГБУ «Южный АСЦ МЧС России»

Аннотация. В статье рассматривается этапы формирования модели управления медицинским обеспечением авиационно-спасательного формирования МЧС России на основе процессного подхода, предлагается конкретный вариант реализации медицинской информационной системы. Анализируется проблема, постановка задачи, разрабатывается логическая модель.

Ключевые слова: медицинская информационная система, цифровизация, формирование авиационноспасательных подразделений.

Formation of the Model of Medical Support Management for Air Rescue Units of the Ministry of Emergency Situations of Russia

Ozhogin A.A.

FGBU "Southern ASC EMERCOM of Russia"

Abstract. The paper deals with the stages of forming the model of medical service provision management for aviation rescue formation of EMERCOM of Russia on the basis of the process approach; a specific variant of medical information system implementation is offered. The authors analyze the problem, the problem statement, and develop logical model.

Key words: medical information system, digitalization, formation of aviation rescue units.

Медицинское обеспечение авиационно-спасательного формирования МЧС России включает в себя большой спектр мероприятий по предполетной, предрейсовой и предсменной медицинской подготовкой. Организовывать в авиационном центре проведение лечебно-профилактических и противоэпидемических мероприятий, а также медицинское обследование и осмотры личного состава центра, осуществлять диспансерное, динамические наблюдение, проводить с ними лечебно-оздоровительные мероприятия, вести медицинскую документацию и многое другое.

Пандемия ускорила проникновение цифровых технологий в сферу здравоохранения, в том числе и оказания медицинских услуг в разных учреждениях. В начале пандемии, в апреле 2020 года, Министерство здравоохранения России создало информационный ресурс для автоматизации сбора данных - регистр COVID-19. Новые цифровые сервисы, посвященные COVID-19, были доступны гражданам в кратчайшие сроки.

В кратчайшие сроки граждане получили доступ к новым цифровым услугам на ВПС, была внедрена телемедицина, помогающая врачам диагностировать COVID-19. Была разработана телемедицина и внедрена телемедицина, помогающая врачам диагностировать COVID-19, а искусственный интеллект (ИИ) пришел к диагностике COVID-19. В результате. Более 15 миллионов граждан воспользовались услугой "Мое здоровье". В результате более 15 миллионов граждан воспользовались услугой "Мое здоровье" на Портале пациентов. В общей сложности специалистами региональных телемедицинских центров было проведено более 1,4 млн. консультаций для пациентов COVID-19юДвадцать одна компания-разработчик решений принимает участие в московском эксперименте по внедрению ИИ в здравоохранение.

Кроме того, в 2020 году скорректировали паспорт федерального проекта «Создание единого цифрового контура в здравоохранении на основе единой государственной информационной системы в сфере здравоохранения (ЕГИСЗ)». Существенным изменением стало включение информационной системы ОМС,

Росздравнадзора и частных организаций в единое цифровое пространство здравоохранения. В 2021 году на региональном уровне будет завершено внедрение подсистем, обеспечивающих централизованное хранение медицинских изображений, лабораторных исследований. Формируются электронные документы "Медицинское свидетельство о рождении" и "Медицинское свидетельство о смерти", и к концу 2022 года все медицинские организации должны выдавать их только в электронном виде.

Структура типовой МИС должна состоять из унифицированных подсистем (аппаратно-программных комплексов, или АПК), в соответствии с основными группами функциональных подразделений частей и учреждений медицинской службы. Набор и содержание подсистем определяются назначением медицинских частей, подразделений и организаций и спецификой их деятельности. Архитектура подсистем должна обеспечивать возможность создания горизонтальных и вертикальных связей как внутри МИС, так и со специализированными сегментами внешних информационных систем.

На основе единого информационного пространства медицинской службы предусматривается решение следующих основных задач

- Непрерывный мониторинг состояния здоровья сотрудников и деятельности сил и средств медицинской службы;
- Регистрация медицинской информации о сотруднике в месте ее возникновения с последующей интеграцией в единую информационную систему медицинской службы;
- персонифицированный учет оказания медицинской помощи и потребления лекарственных средств и изделий медицинского назначения
 - авторизованный доступ к электронной медицинской информации во всей системе здравоохранения;
 - Обучение медицинских специалистов на базе компьютерных систем и тренажеров;
 - Обеспечение мобильности медицинских специалистов на основе беспроводных технологий;
 - Использование единых протоколов для обмена медицинской информацией;
 - Ведение электронной истории болезни в стационарных учреждениях;
- Консультирование медицинских специалистов с использованием графики высокого разрешения, аудио и видео;
 - Централизованная диспетчеризация назначений, лечебных и диагностических мероприятий;
- Доступ к интеллектуальным системам принятия решений во всей функциональной области здравоохранения.

В системе автоматизации управления медицинским обеспечением можно выделить три основных уровня: носитель личной информации и устройство его считывания; средства сбора, накопления, обработки и передачи медицинской информации в рамках лечебно-профилактического учреждения (ЛПУ); единая медико-информационная инфраструктура ТВД, функционирующая как в интересах медицинской службы, так и войсковых органов управления.

В исследовании автора применялись человеческие факторы и инструменты системного проектирования для изучения производительности человека, потока информации, обмена знаниями и организационных факторов в нескольких учреждениях здравоохранения. В первом из этих проектов рассматривалась необходимость документирования циклов проектирования, оценки и совершенствования медицинских процессов, таких как своевременное лабораторное тестирование и реагирование на результаты по запросам врачей [1].

Без четкого понимания происхождения, назначения и процессов, влияющих на электронные и физические информационные потоки, поставщикам услуг было трудно эффективно понять задержки и ограничения, влияющие на координацию задач и обмен знаниями, способствующими эффективному оказанию медицинской помощи.

Как в проектах по повышению качества, так и в новых усилиях по разработке инструментов и процессов отчетности о неблагоприятных событиях для медицинских систем автор отметил, что системная инженерная модель информационных и ресурсных потоков, общая для многих специалистов-инженеров, была трудной для общения с практиками в других областях (включая медицину). Когда медицинские работники на различных уровнях смогли увидеть графическое представление того, как их запрос проходил через процессы учреждения, стало намного проще распознавать узкие места и ограничения или даже предлагать улучшения компьютерных форм или других человеко—машинных интерфейсов [4]. Требование к четкой и легко сообщаемой общей модели потоков процессов оказания медицинской помощи является еще более важным из-за нескольких факторов:

- 1. Оказание медицинской помощи-это в высшей степени совместный процесс координации, хотя в медицинской литературе не уделяется широкого внимания требованиям координации.
- 2. Современные инструменты анализа неблагоприятных событий и первопричин подчеркивают потоки процессов и ожидаемые действия на основе информации и ресурсов, доступных поставщикам.
- 3. Комплексные усовершенствования, которые улучшают работу подразделений и объектов, а не отдельные информационные системы или «решения» пользовательского интерфейса, требуют расширенного анализа того, как, когда и где информация и ресурсы используются в критической по времени среде выполнения задач.

Эти вопросы представляют больший интерес, например, для скандинавских стран с конца 1990-х годов, включая особый интерес к процессам координации в отделениях радиологии. Требования к надлежащей координации информации, задач и артефактов имеют особое значение при проведении анализа первопричин и управления качеством, как описано ниже.

МИС реализована на основе клиент-серверной архитектуры построения информационной системы, включающей в свой состав один или несколько серверов, выделенное высоконадежное хранилище данных и автоматизированные рабочие места специалистов [2].

В данной архитектуре ПО каждого из APM состоит из универсального ядра и набора функциональных модулей. Каждый из модулей реализует ту или иную законченную функциональную возможность и загружается динамически по мере необходимости ядром ПО APM.

Рис. 1. Общая схема взаимодействия компонентов МИС

Модель разработки включает в себя следующие элементы (рисунок 2):

- таблица типов информационных объектов (ClassList);
- таблица экземпляров объектов (ObjectList);
- справочник типов свойств (nsiPropTypes);
- справочник дополнительных свойств (nsiProps);
- таблица определения свойств объектов (ClassPropLinks). Данная таблица реализует связь многие ко многим между объектами и дополнительными свойствами. В случае если свойство явным образом не связано ни с одним из объектов, оно становится доступным для любого типа объекта;
 - таблица значений свойств (ObjectProps).

Таблиц значений дополнительных свойств может быть несколько в соответствии с количеством используемых типов данных (включая составные: списки, справочники и пр.).

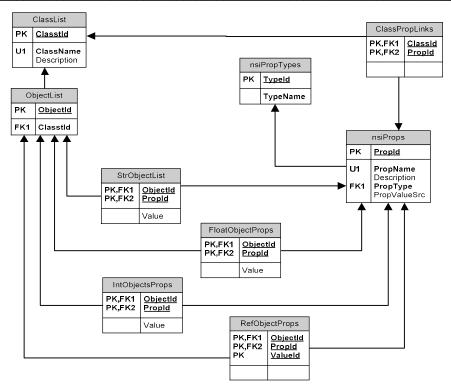


Рис. 2. Модель разработки

Таким образом, разработка программного обеспечения для формирования поисково-спасательных подразделений будет логическим продолжением начатой работы. И будет интегрироваться с существующим программным обеспечением. Используя данные исследования, можно будет формировать сбалансированные поисково-спасательные подразделения.

Литература

- 1. Федеральный закон от 22.08.1995~N~151-ФЗ (с изменениями на 30.09.2021) «Об аварийно-спасательных службах и статусе спасателей" (принят Государственной Думой 14.07.1995).
- 2. M. J. Wooldridge and N. R. Jennings, "Intelligent agents: теория и практика", The Knowledge Engineering Review, 10 (2), pp. 115-152, 1995.
- 3. Д. А. Ризванов, "Использование мультиагентной технологии для решения проблемы распределения ресурсов в чрезвычайных ситуациях". (на русском языке), Вестник УГАТУ, том 16, № 6 (51), стр. 220-225, 2019.
- 4. Белюшин А.И., Хамидуллин В.Р., Еникеева К.Р., «Программное обеспечение для оперативного учета деятельности аварийно-спасательных служб и сбора чрезвычайных ситуаций» // «Интеллектуальные технологии обработки информации и управления», Уфа, 17-20 июля 2012 г., с. 145-147.
- 5. Белюшин А.И., Хамидуллин В.Р., Еникеева К.Р., "Программное обеспечение для документирования деятельности аварийных служб и анализа статистики чрезвычайных ситуаций", в кн. Молодежной конф. "Интеллектуальные технологии для обработки информации и управления", Уфа, 17-20 июля 2012 г., с. 83-85.
- 6. Н.И. Юсупова и Г.Р. Шахмаметова «Интеграция инновационных информационных технологий: теория и практика," (на русском языке), Вестник УГАТУ, том 14, no. 4 (39), pp. 112-118, 2010.
- 7. Н.И. Юсупова, С.А. Митакович, К.Р. Еникеева, "Системное моделирование процесса информационной поддержки разработки паспортов безопасности материалов опасных производственных объектов", Вестник УГАТУ, том 10, № 2. (27), pp. 80-87, 2008.
- 8. Н.И. Юсупова, Г.Р. Шахмаметова и К.Р. Еникеева «Модели представления знаний для идентификации опасности промышленных объектов», (на русском языке), Вестник УГАТУ, том 11, № 1 (28), стр. 91-100, 2018.